Comparison of DQN and Double DQN With Dueling
Architecture on Super Mario Bros

Du Han
School of Computer Science, McGill University
du.han@mail.mcgill.ca

Abstract

In this project, I compare Deep Q-Network (DQN) and Double Deep Q-Network
(Double DQN), both augmented with Dueling Network architectures. DQN uses
a target network to estimate maximum Q-values, which can lead to optimistic
bias. Double DQN addresses this by using the online network to select actions
and the target network to estimate their Q-values, reducing overestimation. The
Dueling Network architecture, incorporated into both models, splits the network
into streams for estimating A and V. Both of them are tested on the Super Mario
Bros environment from the OpenAl Gym library. The results demonstrated that
with dueling architecture, the difference between DQN and double DQN is not
significant, implying that the dueling architecture minimizes the performance
differences between DQN and Double DQN.

1 Introduction

This project compared the effectiveness of DQN and Double DQN with dueling architecture, specif-
ically on a Super Mario Bros dataset, using the OpenAl Gym. As an intersection of my interests
in video games and machine learning, this study aims to explore the DQN algorithm, which was
covered but not deeply explored in lecture.

As a video game lover, I am always interested in how reinforcement learning could be used in
video game environments. However, modern video games maybe too complex since it may include
multilayer mechanics and evaluation of state and reward would be difficult. The choice of Super
Mario Bros represents a blend of simplicity and complexity, making it an ideal candidate for this
project. Comparing to existing works, this project focused on comparing the performance of different
architectures of DQN on this specific environment, and I believe it would provide insights into RL
field.

2 Background and Related Works

21 DQN

Deep Q-Network (DQN) is a approach of reinforcement learning that combine traditional Q-Learning
with deep neural networks. Mnih et al. [2]] first introduced DQN, demonstrating DQN is capable
of mastering effective strategies directly from complex, high-dimensional sensory data through a
comprehensive reinforcement learning process, and it could reach a performance level equivalent to a
professional human game player across a collection of 49 games.

In addition to using of neural networks, one critical difference between DQN and regular Q-Learning
algorithm is the use of target network, which is a clone of the online/policy network that helps
stabilize training by providing a fixed set of parameters for calculating the target Q-values during
updates. This network’s weights are periodically updated to match weights of online/policy network.

2.2 Double DQN

Although the use of DQN was successful, there are still some issues such as "over-estimation" of
Q-Values. One usual improvement is double DQN. In Double DQN, the action is selected based on
the Q-values from the online/policy network, which is continuously updated, ensuring that the most
current data influences action selection. Sewak [3]] summarized that the ‘over-estimation’ problem
of Q Values and the instability in the target values could be simultaneously overcame when using
double DQN.

2.3 Dueling Architecture

The Dueling Network architecture introduces a further refinement by splitting the network into
two distinct pathways: one to estimate the state value function V (s), and the other to compute the
advantage function A(s, a) for each action. This bifurcation allows the network to better discern the
relative importance of each action within a given state.

Wang et al. [4] showed that the Dueling DQN architecture significantly enhances policy evaluation,
particularly when actions have similar values. The architecture decomposes the Q-function as

Qova0,0,8) = V(5:0,) + (Al5,030,0) = max Al '50.)).
a’'e

and has been shown to outperform the state-of-the-art in the Atari 2600 domain, providing a more
generalized learning across actions without altering the underlying reinforcement learning algorithm.

3 Methodology

3.1 Data Collection and Processing

The dataset utilized in this study is derived from the ‘gym-super-mario-bros[1]‘ environment, which
is part of the OpenAl Gym library. Note that version 0.17.3 of the gym library was used for
compatibility.

Effective preprocessing of the environment is proved to be critical for getting better results in
this project. Initially, I applied several wrappers commonly used for preprocessing Atari games
in the OpenAl Baselines, which provided a standardized approach to modifying the game. Key
modifications included frame skipping, frame stacking, grayscaling, resizing, and permuting the
image data to match the input format expected by our neural network models. I also used some
wrappers implemented by myself to modify the episode reset conditions. Since the reward of this
environment is very unstable, I also smoothed the reward before saving it into the replay.

3.2 Experimental Setup

The experiments were conducted using nl-standard-8 machine on Google Colab Enterprise, with
NVIDIA_TESLA_T4 GPU accelerator. Each experiment takes 10 to 20 hours on this configuration
and weights of trained models are saved.

3.3 Algorithm Training

The training of our algorithm began with an in-depth analysis of existing code found on platforms
like Kaggle and GitHub. This initial step was crucial for understanding current methodologies and
gaining insights into potential improvements. Building on this foundational knowledge, we then
crafted our own algorithm from the ground up, ensuring a tailored fit to the unique demands of our
research.

The programming was carried out in Python notebook, using the functionalities offered by pytorch.
During the development phase, we addressed specific challenges, such as calculation of temporal
difference, ensuring our algorithm was robust and effective.

Our algorithmic framework was architected with modularity, comprising distinct classes that corre-
spond to different DQN agent configurations. This modularity facilitated the exploration of different
configurations and integration of diverse loss functions and optimizers.

Moving Mean of Rewards Over Episodes Moving Mean of Rewards Over Episodes

2500
—— Dueling DQN with Adam Optimizer and L1 Loss
2250 Dueling DQN with SGD Optimizer and L1 Loss

20004 2000

1750 1
1500
1500 1
1250 4
1000
1000

01 | on VA
| ”N.,IJ e

500 4

Mean Reward (Last 100 Episodes)
Mean Reward (Last 100 Episodes)

\

il
e iR
.

@
s
S

—— Dueling Double DQN with Adam Optimizer and L1 Loss
Dueling Double DQN with SGD Optimizer and L1 Loss

] 1000 2000 3000 4000 5000 6000 7000) 1000 2000 3000 4000 5000 6000 7000
Episode Episode
(a) dueling dqn (b) double dueling dqn

Figure 1: moving rewards of dqn with adam optimizer and sgd optimizer

Moving Mean of Rewards Over Episodes Moving Mean of Rewards Over First 2000 Episodes
2500 1000
—— Dueling DON with SGD Optimizer and L1 Loss
Dueling DQN with SGD Optimizer and Huber Loss , !\’h 300
A r
2000 J W 500 fA "
Ji i
v ks
¥ 700 I b
1500 4 W) "'»‘l
W iy ,J Y Py
W

A
500
400

1 i
1000 M w!‘w

Mean Reward (Last 100 Episodes)
Mean Reward (Last 100 Episodes)
@

S
2

:
AV
WY
500 4 d 300
—— Dueling Double DQN with SGD Optimizer and L1 Loss
Dueling Double DQN with SGD Optimizer and Huber Loss
200
] 1000 2000 3000 4000 5000 6000 7000 0 250 500 750 1000 1250 1500 1750 2000
Episode Episode
(a) dueling dqn (b) double dueling dqn

Figure 2: moving rewards of dqn with adam optimizer and sgd optimizer

4 Experiments

4.1 Comparing Adam and SGD optimizer for Dueling DQN

In this experiment, two models were trained: Dueling DQN with Adam optimizer and Dueling DQN
with SGD optimizer, both employing L1 Smooth Loss. Training rewards were recorded. To facilitate
a clearer comparative analysis, the moving mean of rewards for the last 100 episodes was computed
and depicted in a single figure.

As shown in Figure 1(a), the Dueling DQN model utilizing the SGD optimizer demonstrates a quicker
increase and achieves higher rewards more rapidly when compared to the model using the Adam
optimizer, as indicated by its higher reward curve.

4.2 Comparing Adam and SGD optimizer for Dueling Double DQN

Following the experiment 4.1, the experiment was extended to Dueling Double DQN models,
maintaining identical conditions and a similar figure is plotted.

As depicted in Figure 1(b), the Dueling Double DQN with the SGD optimizer exhibits a similar
advantage in rewards, mirroring the faster increase and better performance observed with the SGD
optimizer in the Dueling DQN setup. This results further proves the effectiveness of the SGD
optimizer in these architectures.

4.3 Comparing SmoothL1 loss and Huber loss for Dueling and Dueling Double DQN

Additionally, a comparative analysis was conducted between L1 Smooth Loss and Huber Loss, with
both Dueling DQN and Dueling Double DQN models utilizing the SGD optimizer. This aspect of the
study was aimed at discerning the impact of loss function selection on model performance.

Moving Mean of Rewards Over Episodes

iy

2500 o

o
s v

Tad
ol

AT !
5004 | 'N

1000

Mean Reward (Last 100 Episodes)

—— Dueling DQN with SGD Optimizer and L1 Loss
Dueling Double DQN with SGD Optimizer and L1 Loss

0 1000 2000 3000 4000 5000 6000 7000
Episode

Figure 3: moving rewards of dqn and double dqn, with same optimizer and loss

As shown in Figure 2, it was observed that the performance metrics for models trained with L1
Smooth Loss were nearly identical to those trained with Huber Loss. This similarity was consistent
across both the Dueling DQN and Dueling Double DQN architectures, suggesting that, within the
context of this experiment, the choice between these two loss functions does not significantly affect
the outcome.

4.4 Comparing DQN and Double DQN

To facilitate a direct comparison between Dueling DQN and Dueling Double DQN, both were trained
using the SGD optimizer with L1 loss and identical hyperparameter settings for alpha and gamma.

As shown in Figure 3, the moving mean of rewards indicates a negligible difference in their per-
formance. This could suggest that the "over-estimation" and instability traditionally addressed by
Double DQN may already be solved by the Dueling architecture’s separation of the Q-value into ad-
vantage (A) and state-value (V) streams, potentially making the Double DQN’s additional complexity
unnecessary in this context.

4.5 Comparing Training Duration of Different Models

By analyzing the runtime of each model, we observed consistent trends in training duration across
different configurations. For both Dueling DQN and Dueling Double DQN, using the SGD optimizer
resulted in approximately 20 hours of training time, irrespective of the loss function employed. In
contrast, models utilizing the Adam optimizer required significantly less time, approximately 13
hours, to complete training. However, it is noteworthy that despite its longer training time, the SGD
optimizer tended to yield better performance outcomes, as I showed before.

5 Conclusion and Future Works

In our comparative analysis of the dueling DQN and dueling double DQN architectures, we observed
closely matched performance metrics between the two models. This observation underscores the
pivotal role of optimizer selection in enhancing the efficacy of deep reinforcement learning algorithms.
Notably, the selection of the optimizer appears to be more significant than the distinctions between
DQN and Double DQN. This finding suggests that the optimization strategy may have a greater
influence on the outcome, driving the performance and convergence rate of the learning process.

Future directions include addressing computational constraints that limited the scope of this study,
where the cost of Tesla T4 GPU and large replay memory requirements limited the number of
conducted experiments. More comprehensive trials are essential, such as exploring the impact of
varying learning rates and discount factors, to enhance the robustness and generalizability of the
findings. More validation experiments could also be deployed, and expanding computational capacity
will be crucial for these additional experiments.

References

[1]

(2]

Christian Kauten. Super Mario Bros for OpenAl Gym. GitHub, 2018. URL https://github,
com/Kautenja/gym-super-mario-bros,

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski,
Stig Petersen, Charlie Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518:529-533, 2015. doi: 10.1038/nature14236.

Mohit Sewak. Deep Q Network (DQN), Double DON, and Dueling DON: A Step Towards
General Artificial Intelligence, pages 95-108. 06 2019. ISBN 978-981-13-8284-0. doi: 10.1007/
978-981-13-8285-7_8.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1995-2003, New
York, New York, USA, 20-22 Jun 2016. PMLR. URL https://proceedings.mlr.press/
v48/wangf16.html.

https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

	Introduction
	Background and Related Works
	DQN
	Double DQN
	Dueling Architecture

	Methodology
	Data Collection and Processing
	Experimental Setup
	Algorithm Training

	Experiments
	Comparing Adam and SGD optimizer for Dueling DQN
	Comparing Adam and SGD optimizer for Dueling Double DQN
	Comparing SmoothL1 loss and Huber loss for Dueling and Dueling Double DQN
	Comparing DQN and Double DQN
	Comparing Training Duration of Different Models

	Conclusion and Future Works

